NASA/SAIC Project: Climatic Data Sets for Architectural Applications

by Roberta DiPasquale

The first year of a two-year project, Climatic Data Sets for Architectural Applications, was funded through the NASA Langley Creativity and Innovation Fund. The focus of this architectural project, which is an extension of the Surface meteorology and Solar Energy Project, is the development of a prototype satellite-derived data set for architectural design programs specializing in energy-efficient design.

Frank Lloyd Wright was our country’s first sustainable architect who oriented his buildings with the sun, and incorporated daylighting and passive heating techniques. He referred to his design style as organic architecture. Today we would call it sustainable. Approximately five percent of the architects registered with the American Institute of Architects’ (AIA) are listed as practicing sustainable design. Architect William McDonough, the first recipient of the Presidential Award for Sustainable Development and Interior’s 1999 Designer of the Year, noted that global warming and toxic waste can be designed out of existence by adopting nature’s regenerative principles. These principles include designs that are energy efficient, possibly energy generating, and have a benign impact on the environment. They form the basis of sustainable building design and are embraced by the AIA Committee on the Environment.

In the U.S. alone, buildings account for 62% of electricity use and 36% of total energy consumption. U.S. buildings also account for 37% of ozone depletion potential and 30% of greenhouse gas emissions.

Fig. 1. SatSMet/Perez Global Estimates for January 1986.

An international DOE scientist (Dr. Douglas Balcomb) recently announced that industry now has the capability to design and construct buildings that use 50% less energy at no increase in construction cost if accurate environmental data are available. Therefore, environmental data (various temperature, solar radiation, illumination, winds, cloud cover, and humidity parameters) become the cornerstone of the design process. By inputting environmental data into modern building design programs, computer simulations are generated which perform en-

(Continued on page 7)
Success of the newsletter depends on your contributions.

You are encouraged to send comments, letters, or short articles to the Editor:

Frank Vignola
Department of Physics
1274-University of Oregon
Eugene, OR 97403-1274
Tel: (541) 346-4745
Fax: (541) 346-5861
email: fev@darkwing.uoregon.edu

I would like to thank Daryl Myers and Roberta DiPasquale for their contributions to this newsletter.

Deadline for contributions to the next newsletter is February 1, 2001.

Frank Vignola

Resource Assessment Division
Officers & Board Members

Gary Vliet, Chair
Bob Cable, Vice Chair
David Renné, Secretary

Ray Bahm
Mark Beaubien
Doug Balcomb
John Dunlop
Dan Greenberg
Bill Marion
Rob Nelson
Richard Perez
June 2001
June 2002
June 2002
June 2002
June 2001
June 2001
June 2001
June 2002

RAD Division Nominees

Roberta DiPasquale of NASA Langley/SAIC Surface Solar Energy Project was elected RAD Vice Chair and David Renné of NREL is elected Secretary. Congratulations!

Four RAD members were elected to the board. Jim Augustyn of Augustyn and Company, Bill Marion of the National Renewable Energy Laboratory, Lorin L. Vant-Hull of the University of Houston, and Rob Nelson of Heliakos. The RAD division again has a strong board.

The new officers and board members take their position in April at the annual meeting. Bob Cable, current Vice Chair, will also become Chair as is stipulated in the bylaws.

Thanks should be given to Gary Vliet who has served as chair and to Ray Bahm and Dan Greenberg for the service to the division for the past two years.

In order to open communications between RAD division members, the following members circulated their Email address at the RAD division annual meeting. If you are not on this list and would like to add your name to the list, contact Solar Spectrum’s editor and your Email address will be added to the list and published in the next newsletter.

Augustyn & Company.parsley@solarcat.com
Ray Bahn...............r.bahn@ieee.org
Bruce Bailey............awssci@delphi.com
Roberta DiPasquale.....roberta@saisun02.larc.nasa.gov
John Dunlop............JR Dunlop@IGC.org
Eppley Laboratory Inc. eplab@mail.bbsnet.com
Tracy Gardner..............tgardner@nrel.nrel.gov
Jack Garrison.............jgarrison@sciences.sdsu.edu
Chris Gueynard............chris@fsec.ucf.edu
Bill Marion..............bill_marion@nrel.gov
Ken Miller.................ecskamil@aol.com
Ross McCluney......RMcCluney@fsec.ucf.edu
Bob Nelson.............nelson@heliakos.com
Richard Perez.....Perez@asrc.albany.edu
Helen Powers.......power@udel.edu
Dave Renné........drenne@nrel.nrel.gov
Martin Rymes........marymes@nrel.nrel.gov
Larry SherwoodASES@IGC.APC.ORG
Mike Sloan.............sloan@vera.com
Frank Vignola...........fev@oregon.uoregon.edu
Lorin Vant-Hull......vanthull@uh.edu
Gary Vliet.............gvliet@mail.utexas.edu
Cecile Warner...........cecile@nrel.nrel.gov
The annual meeting of the Resource Assessment Division and several sessions are scheduled for FORUM 2001.

The annual meeting of the RAD division is scheduled for Sunday April 22, 2001 from 4:30 to 6:00 pm. This is a chance to learn about resource assessment activities and to share your interests. This meeting will give us a change to develop a resource assessment agenda that we can present to our congressional representatives while we are in Washington, D.C.

On Monday April 23 from 10:30 am to noon, a forum called “Solar Radiation: Instrumentation Data Forms and Databases” will be held. This is a teaching session for those wishing to be up-dated on solar radiation measurements and data sources. The topics for the planned session are:

a) Solar radiation measurement instrumentation, Frank Vignola
b) Data forms and available databases, (hard copy and web based) - David Renné
c) Satellite Measurements/Data. (applications, resolution and accuracy) - Richard Perez

The intent is to have three persons each make about a 30 minute presentation.

This is geared for a mixed audience of newcomers as well as those somewhat familiar with the technology (but not necessarily experts, i.e. this is not intended to be research oriented).

Also on Monday April 23 from 4:00 pm to 5:30 pm is the first solar resource assessment technical session called Advancements in Radiometer Measurements.

Four papers will be presented.

- D.R. Myers, T.L. Stoffel, I. Reda, S. Wilcox, NREL, Recent Progress in Reducing the Uncertainty in and Improving Pyranometer Calibrations.

On Tuesday April 24 from 2:00 pm to 3:30 pm will be another solar resource assessment technical session called Analysis of Solar Resource Data.

On Wednesday, April 25 from 8:30 am to 10:00 am there is another technical session called Climate and Solar Resource Data Sets.

- D. Renné, NREL, Has Climate Change Affected Solar Energy Resources?
- R. Perez, J.A. Bonaventura-Sparagna, M. Kmiecik, ARSC, D. Ronne, R. George, NREL, Cloud Cover Reporting Bias at Major Airports.

There are many other excellent presentations at this conference. So far approximately 2000 people have registered.
In early November 2000, the GEF (Global Environment Facility) Council conditionally approved the United Nations Environment Programme’s (UNEP’s) Solar and Wind Energy Resource Assessment (SWERA) project for full funding. Once final approval is secured the GEF will allocate to UNEP over $6M in support of SWERA’s 3-year activities. These funds will go to support the SWERA agencies and the participating countries for developing and disseminating the resource data over the next three years. The SWERA agencies that have been developing the project over the past year and a half include NREL, SUNY/Albany, the UNEP/GRID in Sioux Falls, SD, Riso National Laboratory, DLR in Germany, Teri in New Delhi, India, and INPE in Sao Jose dos Campos, Brazil.

The SWERA project is designed to develop high quality solar and wind energy resource assessment data and maps for countries that have endorsed the project, and to disseminate these data through the UNEP GRID (Geographic Resource Information Database). The data will be incorporated into Geographic Information Systems software packages and tools in formats that will allow energy planners and project developers to have a much more complete picture of the renewable energy resources in their country, and the potential for developing those resources.

A number of different types of data will be made available to SWERA. For solar these include the low-resolution, global solar data developed through NASA’s Surface Solar Energy program, medium resolution climatological solar data developed using NREL’s Climatological Solar Radiation model, and high resolution site/time specific data using techniques developed at SUNY/Albany and DLR. These high-resolution techniques make use of data collected by geostationary weather satellites, such as GOES, Meteosat, and the INSAT. INPE’s high-resolution solar mapping methodologies will also be applied to South America. For wind, the high-resolution (1-km) wind resource mapping techniques developed at NREL will be the primary tool, with support for specific areas using Riso’s wind mapping techniques. Wind mapping methods under development at Brazil’s wind energy center will also be applied in that country. Locations where multiple techniques are being applied will allow for cross-model intercomparison studies by the SWERA team.

Countries that have currently endorsed the project, and for which the high-resolution wind and solar mapping methodologies will be applied, include Guatemala, Honduras, Nicaragua, El Salvador, Cuba, Brazil, Algeria, Ghana, Kenya, Ethiopia, China, Nepal, Bangladesh, and Sri Lanka. The medium resolution solar mapping will be conducted for four large regions around the world that encompass all of these countries.

Earlier in the project development phase it had been understood that India would also endorse SWERA. However, recently India officially decided to withdraw from the project. Ethiopia, whose endorsement came too late for the GEF Council review, will likely be invited to replace India. The UNEP and GEF believe that, once the initial countries have obtained the high quality data and tools for their regions, other countries will seek funding support to join in future SWERA activities. The UNEP is considering several mechanisms by which the project can continue with additional countries and new funding sources, once the current three-year program has been initiated. The vision of the entire SWERA

(Continued on page 5)
Real Time PV Performance and Solar Radiation Data Available on the Web

One can now view real time solar radiation on the web at selected sites around the country. Ascension Technology, now part of Applied Power Corporation, developed a real time display that shows solar radiation data and the electrical output of PV arrays. A list of sites with this capability can be found at http://www.ascensiontech.com/rdinfo/rdpage.html.

An example of the information available is shown in the above applet for North Salem High School. Note the meters showing AC ‘solar ‘power out of the array and the incident sunlight. Also shown are meters for wind speed and ambient temperature.

A useful feature of the display is that one can click on the temperature or the wind speed and the units will change from °F to Celsius. For wind speed the units are changed from miles per hour to meters per second. This is a good way to get students to think about units.

Also shown on the applet is the total electricity produced up to the current time during the day and the total amount of electricity produced over the year to date.

On the bottom right of the figure, the electricity produced is translated into the amount of carbon dioxide saved (or not produced). In this example, 1 kWh of electricity produced the photovoltaics prevent the addition of 1.2 lbs of carbon dioxide being dumped into the atmosphere by burning coal to produce the equivalent amount of electricity.

Given the electrical power output of the array in kW and the incident solar radiation in Watts/m², it is possible to estimate the actual performance (or efficiency) of the array. Of course one needs to know the size of the array to make such calculations.

The array in Salem produces 1.6 kWh of AC power when the solar radiation is 906 watts/m². A good exercise would be to have students estimate the efficiency of the solar cell array given that the array covers 125 ft².

UNEP’s Resource Assessment Project Moves Forward

(Continued from page 4) technical team is for a global high-resolution solar and wind atlas to evolve.

The version of the SWERA project document that was approved by the GEF Council in November can be found on the http://GEFWEB.ORG web site by selecting: Documents, Council Documents, November 2000, Work Programme, Projects. The SWERA document is available for downloading under Climate Change.
Golden, Colo., Jan. 8, 2001 - The 'distributed power' will be a "critical because different electrical generation technologies produce power with widely varying characteristics. The data produced by the center will be used by standards-writing bodies to develop consensus test standards and by independent organizations to formally certify distributed power equipment.

Dick DeBlasio, who led NREL's earlier work on distributed power, has been named the new center's manager of Distributed Power System Integration.

Hydrogen and Natural Gas Systems will combine existing research at NREL into what are two of the most promising areas of distributed power generation: fuel cells and microturbines. Much of the currently planned growth in electrical generation capacity will come from advanced microturbines powered by natural gas, and many experts believe fuel cells that produce electricity from hydrogen have unlimited potential in the years ahead.

NREL's Jim Ohi will manage Hydrogen and Natural Gas Systems for the center.

This month NREL is sponsoring a conference in Washington, D.C. at which key issues surrounding distributed power will be examined. The U.S. Department of Energy Distributed Power Program Review and Planning Meeting, Jan. 15 through 19, will identify priorities for future work, including the development of interconnection standards for distributed power. To learn more, visit DOE's Distributed Power Program Web site.

For more information on that meeting, contact Megan Maguire at NREL, 303-275-4321.
ergy/cost trade-off studies.

One of the key scientific parameters required by the sustainable building design industry is the Direct-beam Normal Radiation (DNR) of the sun. Ground measurements of DNR throughout the world are limited. However, satellite data can be used to calculate global estimates of DNR by applying industry-accepted conversion models. The development of global DNR estimates has been the primary focus of work to date. Two conversion models - Perez and Page – are being investigated for estimating DNR using the output of the Pinker/Laszlo Shortwave Algorithm (a physical model) and the newly developed Langley Parameterized Shortwave Algorithm (LPSA). The Perez and Page conversion models consist of linear equations derived statistically from multi-climatic ground measurement data sets. Fig. 1 is a global plot of DNR calculated from the Perez model for January 1986. This year can be considered a near average year with only a slight influence of El-Nino weather fluctuations. Fig. 2 shows a DNR comparison of NREL TMY (average year) with estimates from the Perez model for January 1986. The plots are in fairly good agreement although two different methods and supporting data sets were employed to derive DNR. Ongoing investigations will involve comparisons of model calculated DNR to ground measurements of DNR to determine the most accurate model for the development of this satellite-derived architectural data set.

Fig. 2. Comparison of TMY Measured and SatSMet/Perez Estimates of DNR for January:

Top: NREL/TMY

Bottom: SatSMet/Perez
Eppley Black and White pyranometers shine in measurements of diffuse irradiance. It is difficult to obtain accurate diffuse measurements because the instrument must be shade from the direct sunlight at all times. Shadowbands do this well, but they also block out some diffuse radiation from the rest of the sky. To eliminate this problem automatic trackers with shade disks are needed to block out only the direct sunlight.

Accurate diffuse measurements are now being obtained with automatic trackers with shade disks. With the improved diffuse measurements comparisons can be made to modeled predictions. On clear days, the average diffuse irradiance is ~100 W/m² or less. Therefore small systematic errors that aren’t apparent in global measurements can significantly affect the new diffuse measurements.

During the nighttime it is well known that the Eppley PSP re-radiates to the night sky and this results in small negative readings over the nighttime. It turns out that this also occurs during the day and this results in a 10 to 20% systematic error in the diffuse reading on clear days.

Climate modelers have been concerned about the measured diffuse data because the values were lower than the values calculated from complex models. This systematic error helps account for some of this discrepancy.

It turns out that old black and white pyranometers, long maligned because of their azimuthal variation, have a much smaller re-radiation problem and are excellent for diffuse measurements. While the black and white wedges do re-radiate to the night sky, they both re-radiate about the same amount. The re-radiation difference is on the order of 1-2 W/m² instead of the 10-20 W/m² observed with the WMO first class thermopile radiometers (Ibrahim Reda—NREL).

When a black and white pyranometer is mounted on a tracker to calibrate the instrument, its calibration characteristics over the day compared very will with an Eppley PSP. While this is a very limited comparison, it does show that the black and white pyranometers would make excellent instruments for diffuse measurements when mounted on an automatic tracker.